ML p(r)ior | Learning Fault-tolerant Speech Parsing with SCREEN

Learning Fault-tolerant Speech Parsing with SCREEN

9406024 | cmp-lg
This paper describes a new approach and a system SCREEN for fault-tolerant speech parsing. SCREEEN stands for Symbolic Connectionist Robust EnterprisE for Natural language. Speech parsing describes the syntactic and semantic analysis of spontaneous spoken language. The general approach is based on incremental immediate flat analysis, learning of syntactic and semantic speech parsing, parallel integration of current hypotheses, and the consideration of various forms of speech related errors. The goal for this approach is to explore the parallel interactions between various knowledge sources for learning incremental fault-tolerant speech parsing. This approach is examined in a system SCREEN using various hybrid connectionist techniques. Hybrid connectionist techniques are examined because of their promising properties of inherent fault tolerance, learning, gradedness and parallel constraint integration. The input for SCREEN is hypotheses about recognized words of a spoken utterance potentially analyzed by a speech system, the output is hypotheses about the flat syntactic and semantic analysis of the utterance. In this paper we focus on the general approach, the overall architecture, and examples for learning flat syntactic speech parsing. Different from most other speech language architectures SCREEN emphasizes an interactive rather than an autonomous position, learning rather than encoding, flat analysis rather than in-depth analysis, and fault-tolerant processing of phonetic, syntactic and semantic knowledge.

Highlights - Most important sentences from the article

Login to like/save this paper, take notes and configure your recommendations