Processing...

### Rerepresenting and Restructuring Domain Theories: A Constructive Induction Approach

**1995-04-01**

9504101 | cs.AI

Theory revision integrates inductive learning and background knowledge by
combining training examples with a coarse domain theory to produce a more
accurate theory. There are two challenges that theory revision and other
theory-guided systems face. First, a representation language appropriate for
the initial theory may be inappropriate for an improved theory. While the
original representation may concisely express the initial theory, a more
accurate theory forced to use that same representation may be bulky,
cumbersome, and difficult to reach. Second, a theory structure suitable for a
coarse domain theory may be insufficient for a fine-tuned theory. Systems that
produce only small, local changes to a theory have limited value for
accomplishing complex structural alterations that may be required.
Consequently, advanced theory-guided learning systems require flexible
representation and flexible structure. An analysis of various theory revision
systems and theory-guided learning systems reveals specific strengths and
weaknesses in terms of these two desired properties. Designed to capture the
underlying qualities of each system, a new system uses theory-guided
constructive induction. Experiments in three domains show improvement over
previous theory-guided systems. This leads to a study of the behavior,
limitations, and potential of theory-guided constructive induction.

**Login to like/save this paper, take notes and configure your recommendations**