Processing...

### Solving Multiclass Learning Problems via Error-Correcting Output Codes

**1995-01-01**

9501101 | cs.AI

Multiclass learning problems involve finding a definition for an unknown
function f(x) whose range is a discrete set containing k > 2 values (i.e., k
``classes''). The definition is acquired by studying collections of training
examples of the form [x_i, f (x_i)]. Existing approaches to multiclass learning
problems include direct application of multiclass algorithms such as the
decision-tree algorithms C4.5 and CART, application of binary concept learning
algorithms to learn individual binary functions for each of the k classes, and
application of binary concept learning algorithms with distributed output
representations. This paper compares these three approaches to a new technique
in which error-correcting codes are employed as a distributed output
representation. We show that these output representations improve the
generalization performance of both C4.5 and backpropagation on a wide range of
multiclass learning tasks. We also demonstrate that this approach is robust
with respect to changes in the size of the training sample, the assignment of
distributed representations to particular classes, and the application of
overfitting avoidance techniques such as decision-tree pruning. Finally, we
show that---like the other methods---the error-correcting code technique can
provide reliable class probability estimates. Taken together, these results
demonstrate that error-correcting output codes provide a general-purpose method
for improving the performance of inductive learning programs on multiclass
problems.

**Login to like/save this paper, take notes and configure your recommendations**